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Abstract 

We consider a class of closed stringlike configurations, called essentially knotted, which 

occur in certain (3+1)-dimensional Yang-Mills+Higgs theories where a compact gauge 

group G breaks to a finite, nonabelian subgroup H. Such objects are labelled by more 

than one flux element in H, and cannot be deformed into the vacuum without overlapping 

the cores of two segments of string carrying noncommuting fluxes. Analogous results for 

multicomponent links of string are also given. Our analysis is performed within a general 

topological framework for discussing the knotting and linking of strings in spontaneously 

broken gauge theories. 



It is well known that spontaneously broken gauge theories can have topological de- 

fects [I]. For example, if a connected group G breaks to a subgroup H which is not 

path-connected, then such a model possesses vortices in (2+1)-dimensions, or strings in 

(3+1)-dimensions. (For most of our discussion below, we will assume that H is finite.) 

These topological objects have generated much recent interest, especially when the unbro- 

ken subgroup H is nonabelian [2%7]. In this paper, we study stringlike Yang-Mills-Higgs 

configurations which form nontrivial knots and links in three-dimensional space. 

First, consider a (2+1)-dimensional gauge theory with gauge group G spontaneously 

broken, via the Higgs mechanism, to a nontrivial finite subgroup H. We work in temporal 

gauge (A0 = 0), and assume that the compact. connected Lie group G is simply connected, 

that is, the fundamental group al(G) is trivial. On the circle 5” at spatial infinity, the 

Higgs field must lie in the coset space (“vacuum manifold”) G/H. Since ~1 (G/H) = H1 

the theory possesses topologically stable vortices of finite energy, labelled by h E H. Here 

h represents the homotopy class, relative to a fixed basepoint yo E S’, of the map from 

S’ to G/H defined by the Higgs field at infinity. Equivalently, h is the Wilson loop of 

the gauge field, in a faithful representation of G, along a contour (based at yo) going once 

around the vortex. If two vortex configurations are labelled by conjugate group elements 

ILL and hz = h-‘hlh, then one can be transformed into the other by a global h gauge 

transformation. 

In a (3+1)-dimensional gauge theory with G broken to H as above, there will exist 

topologically stable strings of infinite extent and energy. Finite energy configurations which 

are closed loops of string can also be formed in these theories-such objects will generally 

he unstable, preferring to collapse to a point. We can always imagine, however, adding 

additional interactions which make the string repel itself at short distances, allowing stable 

loops [6]. Our purpose is to classify such loops of string. More precisely, given a fixed closed 

curve K in R3, we will determine the number of distinct gauge-Higgs configurations whose 

energy density is localized’ on K. (Two configurations that are related by a static gauge 

transformation which is trivial at spatial infinity will he considered equivalent.) If K is 

unknotted, this number is equal to the order of the finite group H, which we denote by 

IHI. By contrast, we will see that if the closed loop K forms a nontrivial knot in IR3, 

then the elements of H may not be sufficient to label the distinct configurations. More 

1 We are working with idealized strings of zero thickness (K is one-dimensional). 

1 



generallyl we will consider configurations which are arbitrary n-component links (that is, 

links of n closed st,rings), 1~ 2 1. 

In order to construct the gauge-Higgs configurations whose energy density is localized 

on a link L, it will be necessary to consider the fundamental group xi(lR3 - L). A generic 

element of rl(lR3 - L) is a (homotopy class of a) loop starting at a fired point yo (which 

we choose to he at spatial infinity) and winding around various portions of the link L 

before returning to yo. Given any L-configuration as above, we assign to each element 

t2 E al(lR3 - L) the Wilson loop w(e) E H of the corresponding gauge field. The result- 

ing map from ai(lR3 - L) to H is a homomorphism. Conversely, every homomorphism 

W : r1(lR3 - L) -+ H gives rise to an L-configuration hy considering the elements IV(e) 

as Wilson loops’. Therefore. there is a l-l correspondence between these homomorphisms 

and gauge-Higgs strings of type L. As an example, let L he a trivial knot Ko which we take 

as the unit circle iu the x-y plane. Clearly, ai(lR3 - K o IS isomorphic to the integers Z. ) 

The integer p corresponds to a loop which circles through Ko p times (in the same sense). 

One constructs a l~omon~orpl~ism W : B + H by sending the integer 1 to any h E H; 

the flux element of the associated string is h. Thus, the number of Kc-configurations is 

equal to [HI. (Note that a 180’ rotation of the circle Ko about any of its diameters turns 

a string with flux h into one with flux h-l.) To show that more can happen when L is 

nontrivial, we must better understand the general structure of ?ri (lR3 -L), for which it will 

he necessary to use certain aspects of the mathematical theory of knots and links which 

we now review. 

A convenient presentation (a set of generators and defining relations) for the group 

xl(lR3 - L), the Wirtinger presentation [8], can he obtained as follows. First, choose an 

orientation for each component of the link L in question, and then consider a regular 

planar projection of this oriented version of L with indicated over- and under-crossings 

(see fig. 1). Any given link possesses numerous different planar projections, related by 

the so-called Reidemeister moves [S]. Each projection will yield, by the procedure defined 

below, a presentation of rr(lR3 - L). Any one of these will do for our purposes, and in what 

follows we fix a specific projection PL. III Pr. there will be a number, say m, of disjoint 

line segments or arcs. If n is the number of components of L, then m 2 n. There will he a 

2 Two conjugate homomorphisms, IV1 and IV, = h-’ Wrh, yield gauge-Higgs fields re- 

lated by a global 11 gauge transformation. See [3] for a similar homotopy-theoretic approach 

to vortices. 
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generator of ?rr (lR3 -L) associated with each such arc. Call these generators zi, 1 5 i 5 tn. 

and label each arc in the diagram PL by an zi as in fig. 1. The generator zi represents the 

homotopy class of a loop (with basepoint V/O) which encircles arc i once, and passes in front 

of every other arc. We choose the orientatiou of the loop relative to that of the arc i to 

obey a right hand rule. Each crossing A of Pr, yields a relation between those generators 

which are associated with the arcs incident on A. This relation can always be put in the 

form zli = z;‘zjsi, where several of the indices i,j, k may he the same depending on 

the global nature of the diagram. In fig. 2 we show a generic oriented crossing and its 

corresponding relation. The number of crossings in a link diagram is always less than or 

equal to the number of arcs, so we end up with a presentation of ?ri(lR3 - L) having m 

generators zi and Q 5 m relations Ri. We write this as nr(lR3 - L) = ( Xi 1 Rj ). One can 

show that any particular relation iu the above set is a consequence of all the others taken 

together, so that we may delete any one of the Rj’s from our presentation. 

As an example, we reconsider the unknot Ko which projects to a simple circle. Here 

we have a single generator z, and since there are no crossings, there are no relations. We 

thus recover ri(lR3 - Ko) = ( 2 1 0 ) = Z. A second, less trivial example is the trefoil 

knot T shown in fig. 1. Using the procedure above we find three generators ~1, zs and z3 
-1 subject to the relations zr = z3 2223, 2s = z;~z~z~ and zs = ~;~zcizs. As alluded to 

earlier, the last relation (for example) is a consequence of the first two, so that we may 

write our presentation as 

a*(R3 -T) = ( z1,z*,z3 ] 371 = 531z2z3, z* = z:;lz321 ). 0) 

This can he simplified further by eliminating ~3 in favor of zr and 5s using the above 

(deleted) relation. After some algebra, we obtain 

a1(IR3 -T) = ( Zl,Z2 I 21qq = ZZ~lZ2 ). (2) 

This infinite. nonahelian group is known as the braid group B3 [8]. When using the 

presentation (2) to find homomorphisms from x1(R3 - T) into H and to discuss the 

resulting string configurations, one must remember that the flux in the arc lahelled zs in 

fig. 1 is determined by 573 = ~;~zz~zrs. 

We now turn to some two component links. First, consider a trivial link Lc along 

with a projection PFo’ given by two disjoint circles as in fig. 3. In this case we have two 
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generators. one for each component, and no relations. The resulting nonabelian group is 

the free group FZ on two generators, zi and ~2; 

Tl(lR3 -Lo) = ( a,xz I 0 ). (3) 

The simplest nontrivial link is the Hopf link Li shown in fig. 4. Again we have two 

generators. but now two relations as well coming from the crossings in the diagram. Both 

of these relations say the same thing, namely, that the two generators commute. So we 

have 

*1(lR3 - Ll) = ( Xl,XZ 1 Xl = x;lx122 ). (4) 

This abelian group is isomorphic to the direct product Z x Z. It is straightforward to treat 

more complicated examples. In all cases, the group ai(lR3 - L) is infinite and torsion-free. 

Calculating the link groups ?ri(IR3 - L) is only half the story. For the purpose of 

classifying string configurations in the above gauge theories, we still must study the ho- 

momorphisms of these groups into the appropri~ate finite group H. These are constructed 

by sending the generators Zi to specific elements of H such that the defining relations 

in ri(IR3 - L) are satisfied. For any knot (i.e., one-component link) K, one can always 

construct a homomorphism by sending all of the generators to a single arbitrary element 

h E H. The relations in ai(R3 - K) are then automatically satisfied. Such homomor- 

phisms are in 1-l correspondence with the elements of H. These are the “expected” maps 

whose existence we have already seen at the level of the trivial knot Ko. However. there 

may be other homomorphisms of ~1 (lR3 - K) into H. A gauge-Higgs field associated with 

one of these new maps has no analogue in the unknotted case. We will call these configu- 

rations essentially knotted. In an essentially knotted configuration, the H-flux in the string 

changes discontinuously (at three or more crossings) as one traverses a diagram PK for the 

relevaut knot K. The Wirtinger relations between the fluxes in PK can be understood by 

transforming to a singular gauge in which the gauge potential is only nonzero on a com- 

pact surface whose boundary is K. Also, choose this surface to emanate from the string 

in a direction perpendicular to the plane of projection of the diagram, and away from the 

viewer. At each crossing, the string which crosses under punctures the portion of the sur- 

face coming from the string which crosses over. As it pierces the surface, the H-flux of the 

under-crossing string will be conjugated by that of the over-crossing string. Though the 

H-representatives of distinct Wirtinger generators of *i(lR3 - K) are, in general, different 
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from each other for an essentially knotted string, we see that they must all be in the same 

conjugacy class of H. 

For multicomponent links. it is still true that sending all the Wirtinger generators of 

ai(lR3 - L) to a single element h E H yields a homomorphism. In the resulting string 

picture the H-flux is constant in any component of the link, and the same flux h runs 

through each component. One can also attempt to give the different components distinct 

fluxes. while still keeping the flux constant in any fixed component. In general, there 

will be strong constraints on the choice of these flux elements. If we take a trivial two- 

component link Ls with projection PFO’ (fig. 3), then ~i(lR3-Lo) is presented as in (3) and 

we may assign any two fluxes to the two components and obtain a homomorphism. If Lo 

also possesses the overlapping planar projection Pp,’ shown in fig. 3, then the appropriate 

Wirtinger presentation of nl (El3 - Lo) for this choice is 

7rl(R3 - Lo) = ( Zl,Z2,23 1 23 = +wz ). (5) 

(This is, of course, still isomorphic to the free group Fz.) One can again assign any 

elements hl and hs to the generators zi and zs respectively. However the flux through 

arc 3, which belongs to the same component as arc 1, will be different from hr unless we 

have hi 1~s = hshi. Note that the two descriptions of Lo-configurations provided by Pg’ 

and Pg’ are indeed equivalent, even though they look somewhat different. In particular, 

using either projection we find that there are IHI Lo-configurations. As another example, 

consider the Hopf link Li of fig. 4 whose group ~i(lR~ - Lr) is presented in (4). Since the 

generators satisfy zizs = zszi, the only allowed strings of type Li are those where the 

fluxes in the two components commute [7]. If H is nonabelian, this implies that there are 

less Lr-configurations than Lo-configurations. 

A precise definition of essentially linked string configurations is somewhat more dif- 

ficult than the analogous one for knots. The source of the difficulty is that changes in 

flux can occur even in some projections of a ttivial link, as demonstrated above. The 

corresponding statement for knots does not hold. Intuitively, a configuration of type L is 

essentially linked if, for an arbitrary singular gauge choice, the flux in some component of 

L changes as it pierces the gauge surface coming from some other component. In other 

words, in all diagrams obtainable via a sequence of Reidemeister moves from a planar 

projection of this configuration, the flux in some component changes at a crossing with 

an arc belonging to a different component. This assures us that Lo-configurations can 
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never be essentially linked-nor can configurations where all the changes in flux are due 

to self-crossings of individual components. (With this definition there are also no theories 

possessing essentially linked strings of,type Li.) We now turn to examples which illustrate 

the existence of essentially knotted and essentially linked gauge-Higgs fields. These are the 

main results of this paper. 

Let us first consider the case where the unbroken discrete subgroup H is abelian-for 

example G = SU(n) breaking to its center, the cyclic group of order n, H = B,. When H 

is abelian we can assign separately to each component of a link L an arbitrary element of 

H; any such assignment automatically satisfies all the Wirtinger relations. Moreover, the 

form of these relations implies that this exhausts all possibilities. That is, the flux in any 

given component nest be constant. and hence there is no essential knotting or linking in 

these theories. Things may change when H is nonabelian. A commonly discussed theory 

with nonabelian strings is that of G = SU(2) b reaking to the 8-element quaternion group 

H = Qs [4]. The elements of Qs c SU(2) are fl and the Pauli matrices fiuj, j = 1,2,3. 

It is interesting to note that no essential knotting occurs in this model either. This can 

be seen by recognizing that in any essentially knotted string configuration, the images in 

H of at least two of the Wirtinger generators of ni(IR3 - K) must not commute. Further, 

as mentioned earlier. the full set of these images must lie in a given conjugacy class of H. 

Now> there are five conjugacy classes of Qs, namely, {l}, { -1) and {ioj, -i~i}, j = l-2,3. 

Since the members in any one of these classes clearly commute with each other, there is no 

essential knotting in the Qs mode13. By contrast, there is essential linking in this theory. 

Consider the link Ls of fig. 4. whose group ?rr(lR3 - Lz) has the presentation 

a,(lR3 - Lz) = ( x1,x2,x3,q 1 tq = zc3%czz3, x* = x~!qxq, z3 = x;1x422 ), (6) 

where we have deleted the redundant Wirtinger relation z~q = z.;iz3zl. Six dis- 

tinct essentially linked string configurations can be obtained from the homomorphisms 

W.jk:x~(lFt3-L~)-+Q~, lsjfks3,definedby 

WAz*) = iUj = -W,,(xz), Wjk(X3) = -kQ = -Wjk(x4). (7) 

3 More generally, it can be shown that essential knotting never occurs in a model where 

H is a nilpotent group. This class of groups includes, among many others, the group Qs 

and all abelian groups. 
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The configurations associated with Wj, and Wkj are related by a 180° rotation of Lz 

about its vertical axis of symmetry in fig. 4. It is also straightforward to show that any 

other homomorphism leading to an essentially linked Ls-configuration is conjugate to one 

of these. For instance, consider the homomorphism ~j~ given by l%‘jk(zi) = -Wj~(~i). 

We have tijk = h-‘W,&, where h = ioe, ! # j, k. 

We are now ready for an example in which essential knotting occurs. In this model, 

the group SU(2) is broken down to the binary dihedral g~onp Di, of order 12. This 

subgroup is the double cover of Ds c SO(3) which consists of the rotational symmetries 

of an equilateral triangle in 3-space; De is isomorphic to the full permutation group on 

3 objects. The group DT2 c SU(2) can be generated by two elements a E ic?. ni and 

b = ia.&, where the fixed unit vectors $ and n> satisfy Ci .rii = -l/2. From the algebra 

of the Pauli matrices, we see that these generators obey a2 = (ab)3 = b2 = -1. The 

conjugacyclasses of Di2 are given by (l}, {-l}, {a, bl -aba}, {-a, -b, aba}, {ab, ba} 

and {-ab. -ba}. Now consider the trefoil knot T in fig. 1, whose group is presented in (2). 

There is a homomorphism W : zi(lR3 - T) -+ D’ 12 given by W(zi) = a, W(Q) = b. The 

string configuration associated with W is essentially knotted since W(zi) # W(Q). So, the 

D;, model has essentially knotted trefoils. Any other essentially knotted T-configuration 

in this theory is related to this one by a global H gauge transformation, followed by a 

continuous motion of the string in lR3 (beginning and ending in the same position T). 

Essentially linked strings of type L2 also occur here. For example, using the presentation 

in (6) we can define W : al(lR3 - L2) --t D’ 12 by W(zi) = a, W(Q) = b> W(Q) = ab and 

W(Q) = ba. 

At this point, it is worth remarking that there is a finite action path interpolating 

between any two closed string configurations. (Therefore, there is tunneling between the 

corresponding quantum string states.) In particular, one can deform a string of any type L 

into one of trivial link type. For an essentially knotted or essentially linked configuration, 

such a deformation will always require overlapping the cores of two arcs with noncommuting 

flux elements. In describing this process, it is useful to imagine a “bridge” of string forming 

between these two arcs as they pass through each other [5][9]. The flux through this bridge 

is the commutator of the two fluxes in the original arcs. An example is shown in fig. 5. 

Here, the initial configuration is of type Ls and is associated with the homomorphism 

IV2 in (7). As the two components are pulled apart, bridges appear which carry a flux 

fll -1+3c72 = (01cJ2)2 = -1. 



Some cautionary remarks should be made as well about the situation when the Lie 

group G is not simply connected. Here, rl(G/H) 1s no longer just given by H, and as a 

result the homomorphisms of PT~(IR~ - L) into H no longer label the gauge-Higgs strings 

of type L. In particular, knowing the H-flux assignments (Wilson loops in a faithful 

representation of G) for the arcs in a given planar projection of a string does not suffice 

to determine the configuration. The missing information, which cannot be obtained from 

Wilson loops. is provided by the abelian group ~1 (G). More precisely, we have the following 

short exact sequence (group extension) 

{e} ---* n,(G) 5 rl(G/H) 2 H + {e}. (8) 

This can be obtained from the long exact homotopy sequence of the canonical projection 

map p : G -+ G/H. (Note that if G is semisimple, then nl(G/H) is still finite. Otherwise, 

it is infinite. Further, it can be shown that the image of the l-l homomorphism p, lies in 

the center of nl(G/H), that is, (8) 1s a central extension.) The arcs in a diagram for a link 

L now get assigned elements of this larger group ~1 (G/H), and the homomorphisms from 

rl(lR3 - L) into rl(G/H) label the type L strings. Given such a string, with associated 

homomorphism 4 : al(lR3 - L) -+ rl(G/H), we can recover the H-flux of an arc with 

coccespouding Wictingec generator zi as follows. First, compose the map 4 with the 

boundary homomorphism 6 in (8); this gives rise to a homomorphism W+ : al(Ilt3-L) -+ H, 

that is, W+ = 6 o q5. The H-flux of the above arc is then given by W+(z;). For a knot K it 

is true that any homomorphism from a,(IR3 - K) into H can be obtained by composing 

one of the above maps 4 with 6. However this is not true in general for a multicomponent 

link L. As a consequence, flux assignments for a string of type L which seem perfectly 

reasonable from the point of view of the subgroup H, may not be allowed due to the 

presence of ?rl (G). 

Wheu G is not simply connected, the only change in the definitions of essentially 

knotted and linked configurations is to replace H by ?rl (G/H). More specifically, the 

configuration associated with q5 : rl(lR3 - K) + rl(G/H) is essentially knotted if 

#(zi) # 4(zj) for some pair of Wictingec generators z; and zj labelling distinct arcs 

in a diagram for the knot K. An L-configuration is essentially linked if, in all diagrams 

obtainable via a sequence of Reidemeistec moves from a projection of this multicompo- 

nent string, the rl(G/H) assignment in some component changes at a crossing with an 

arc from a different component. Using the fact that (8) is a central extension, one can 
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prove for knots that 4(zi) # d(zj) f or some i and j if and only if W+(zk) # FV+,(ze) for 

some (possibly distinct) pair k and e. Hence, simply checking if the H-flux changes as 

you traverse the diagram for K still suffices to determine if the string associated with C$ 

is essentially knotted*. The corresponding statement for links is not true-the H-flux in 

each component can remain unchanged at every undercrossing with another component, 

yet the string may still be essentially linked. To illustrate this, let us consider a model 

which breaks SO(3) down to the subgroup H = Zz x & consisting of all diagonal matri- 

ces. Since 7r,(SO(3)) = Bz, the above analysis is relevant. All of the results concerning 

knotting and linking in this theory ace identical to those in the Qs model discussed earlier 

since the coset spaces SU(2)/Q s and SO(3)/Z2 x Zz are homeomorphic. (In particular 

7rl(SO(3)/& x Z,), which is a central extension of Z, by Zz x Bz, is isomorphic to 

rl(SU(2)/Qs) = Qs.) Thus. we know by our treatment of the Qs model that the & x ZZz 

theory possesses essentially linked configurations. However in this latter theory, the essen- 

tial linking can never be detected by watching the H-fluxes since here H = iT, x Zz is 

abelian. This example demonstrates only part of the danger in considering only H and 

neglecting n,(G) in a discussion of essential linking. The comments at the end of the 

preceding paragraph imply that from the structure of H alone, it may seem as though a 

theory possesses an essentially linked configuration with certain H-flux labels, while the 

additional constraints imposed on the possible H-flux assignments by the presence of nl(G) 

actually rule it out. 

Our analysis can also be extended to include causes where the unbroken subgroup 

H is not discrete. (We will again assume below that the full gauge group G is simply 

connected, though it is easy to extend the results to the general case.) Here we have 

rl(G/H) = a”(H), where TO(H) is the group of disconnected components5 of H. It is most 

natural to define essential knotting and linking in these theories using homomorphisms 

4 : ~1 (lR3 - L) + TO(H). Such a homomorphism q5 assigns to each arc in a diagram for 

the link L the path component of H to which the flux running through it belongs. 4 does 

not care where the flux actually lies within this component. Because of this property, the 

4 This implies that essential knotting never occurs in theories where H is abelian, even 

if ~~ (G/H) is nonabelian. More generally, if H is nilpotent then so is ~1 (G/H), and no 

essential knotting occurs. 

5 More precisely, xc,(H) is the quotient group H/H,, where H, is the connected com- 

ponent of the identity in H. When H is discrete, H, consists of the identity element alone 

and we recover ~1 (G/H) = H. 
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reader may wonder whether it would be better to use maps from si(lR3 - L) into the 

complete subgroup H for our definitions. This approach would have. however, some rather 

undesirable consequences. For example, consider an ~unbroken SU(2) gauge theory. In the 

above notation this means G = H = SU(2). Tl iece are plenty of homomorphisms of, say, 

the trefoil group ai(IR3 - 2’) into SU(2) which have nonabelian images (for instance, the 

map into the D,‘, subgroup discussed earlier). Thus. there ace SU(2) field configurations 

whose energy density is localized on an embedded trefoil in IR3, and which are essentially 

knotted by this alternative definition. But, of coucsel this unbroken gauge theory contains 

no topological strings at all; TI(G/H) = 7co(SU(2)) is trivial. Hence the flux will not 

want to stay confined to the trefoil in this configuration, and will eventually decay away. 

It seems a minimal requirement that an essentially knotted configuration should tend to 

retain its flux. Therefore, we favor the original definition using TO(H) which avoids the 

unwanted scenario. 

We close with a few brief comments. First, we can also consider infinite length “open 

knots” in the framework of this paper. These can be thought of as ordinary knots which 

have been cut open at some point, and the two resulting ends then stretched off to spatial 

infinity in different directions. No modification of our techniques is needed to study these 

new configurations. (Similar statements hold for open links.) There are also configura- 

tions which possess vertices of three or more strings; for example, the three-string vertex 

created when two noncommuting fluxes pass through each other. as in fig. 5. Our classifi- 

cation applies here as well, but additional techniques must be used to calculate the group 

ai(IR3 - r) for such an embedded graph I’. More specifically, a relation must be added for 

each vertex V which states that any single flux incident on V must equal an appropriately 

ordered product of the remaining fluxes. We can further consider theories in which the 

three-dimensional space manifold A4 is different than lR3. For an embedded link L in M, 

the group ac(M - L) replaces ai(lH3 - L) in our analysis. Again, the procedure given 

earlier for finding a presentation of ~1 (EL3 - L) must be generalized for ai(M - L). 

Finally, all of our results have analogues in models containing ungauged or “global” 

strings, such as those used to describe ordeccd media in condensed matter physics, In- 

deed some related work, although with different emphasis, has been done in this area [9]. 

As an example. the global counterpart of the Qs model discussed here has been used to 

describe biaxial nematic liquid crystals. Such correspondences raise the interesting pos- 

sibility that some of the exotic knotted and linked string configurations presented above 

may be detected in the laboratory. 
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Figure Captions 

Fig. 1. A projection of the (right-handed) trefoil knot T. The arcs in the diagram have 

been labelled by the Wirtinger generators 51, z2 and ~3, 

Fig. 2. An isolated crossing in a link diagram and its corresponding Wirtinger relation. 

Fig. 3. Two diagrams, Pt’ (left) and Pg’, for the trivial link L,J. 

Fig. 4. The Hopf link L1 (left) and the link Lz. 

Fig. 5. A deformation of an essentially linked string of type Ls into a trivial link. 
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